domingo, 30 de octubre de 2016

CLONACION: La Oveja "Dolly"


File-Dollyscotland.JPG.jpg
Oveja Dolly

OVEJA DOLLY

La oveja Dolly (5 de julio de 1996-14 de febrero de 2003) fue el primer mamífero clonado a partir de una célula adulta. Sus creadores fueron los científicos del Instituto Roslin deEdimburgo (Escocia), Ian Wilmut, Keith Campbell. Su nacimiento no fue anunciado hasta siete meses después, el 23 de febrero de 1997

Nacimiento

Dolly fue en realidad una oveja resultado de una combinación nuclear desde una célula donante diferenciada a un óvulo no fecundado y anucleado (sin núcleo). La célula de la que venía Dolly era una ya diferenciada o especializada, procedente de un tejido concreto, la glándula mamaria, de un animal adulto (una oveja Fin Dorset de seis años), lo cual suponía una novedad. Hasta ese momento se creía que sólo se podían obtener clones de una célula embrionaria, es decir, no especializada. Cinco meses después nacía Dolly, que fue el único cordero resultante de 277 fusiones de óvulos anucleados con núcleos de células mamarias.

Vida

Dolly vivió siempre en el Instituto Roslin. Allí fue cruzada con un macho Welsh Mountain para producir seis crías en total. De su primer parto nace Bonnie, en abril de 1998.1 Al año siguiente, Dolly produce mellizos: Sally y Rosie, y en el siguiente parto trillizos: Lucy, Darcy y Cotton.2 En el otoño de 2001, a los cinco años, Dolly desarrolla artritis comenzando a caminar dolorosamente, siendo tratada exitosamente con pastillas antiinflamatorias.

Fallecimiento

El 14 de febrero de 2003,Dolly fue sacrificada debido a una enfermedad progresiva pulmonar. Fue un animal de la raza Finn Dorset, cuyos individuos tienen una expectativa de vida de cerca de 11 a 12 años. Sin embargo, Dolly vivió solo seis años y medio. La necropsia mostró que tenía una forma de cáncer de pulmón llamada Jaagsiekte, que es una enfermedad de ovejas causada por el retrovirus JSRV. Los técnicos de Roslin no han podido certificar que haya conexión entre esa muerte prematura y el ser clon, pues otras ovejas de la misma manada sufrieron y murieron de la misma enfermedad. Tales enfermedades pulmonares son un particular peligro en las estabulaciones internas, como fue la de Dolly por razones de seguridad.

Sin embargo, algunos han especulado que era parapléjica, debido a sus pezuñas torcidas. Había un factor agravante al deceso de Dolly y era que tenía una edad genética de seis años, la misma edad de la oveja de la cual fue clonada. Una base para esta idea fue el hallazgo de sus telómeros cortos, que son generalmente el resultado del proceso de envejecimiento. Sin embargo, el Roslin Institute ha establecido que los controles intensivos de su salud no revelaron anormalidad alguna en Dolly, que pudieran hacer pensar en envejecimiento prematuro. Los restos disecados de la oveja Dolly están expuestos en el museo real de Escocia.

Cronología de descubrimientos genéticos notables.

Cronología de descubrimientos genéticos notables

Año
Acontecimiento
1865Se publica el trabajo de Gregor Mendel
1900Los botánicos Hugo de Vries, Carl Correns y Erich von Tschermak redescubren el trabajo de Gregor Mendel
1903Se descubre la implicación de los cromosomas en la herencia
1905El biólogo británico William Bateson acuña el término "Genetics".5
1910Thomas Hunt Morgan demuestra que los genes residen en los cromosomas. Además, gracias al fenómeno de recombinación genética consiguió describir la posición de diversos genes en los cromosomas.
1913Alfred Sturtevant crea el primer mapa genético de un cromosoma
1918Ronald Fisher publica On the correlation between relatives on the supposition of Mendelian inheritance —la síntesis moderna comienza.
1923Los mapas genéticos demuestran la disposición lineal de los genes en los cromosomas
1928Se denomina mutación a cualquier cambio en la secuencia nucleotídica de un gen, sea esta evidente o no en el fenotipo
1928Fred Griffith descubre una molécula hereditaria transmisible entre bacterias (véase Experimento de Griffith)
1931El entrecruzamiento es la causa de la recombinación
1941Edward Lawrie Tatum y George Wells Beadle demuestran que los genes codifican proteínas; véase el dogma central de la Biología
1944Oswald Theodore Avery, Colin McLeod y Maclyn McCarty demuestran que el ADN es el material genético (denominado entonces principio transformante)
1950Erwin Chargaff demuestra que las proporciones de cada nucleótido siguen algunas reglas (por ejemplo, que la cantidad de adenina, A, tiende a ser igual a la cantidad de timina, T). Barbara McClintock descubre los transposones en el maíz
1952El experimento de Hershey y Chase demuestra que la información genética de los fagos reside en el ADN
1953James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice
1956Jo Hin Tjio y Albert Levan establecen que, en la especie humana, el número de cromosomas es 46
1958El experimento de Meselson y Stahl demuestra que la replicación del ADN es replicación semiconservativa
1961El código genético está organizado en tripletes
1964Howard Temin demuestra, empleando virus de ARN, excepciones al dogma central de Watson
1970Se descubren las enzimas de restricción en la bacteria Haemophilius influenzae, lo que permite a los científicos manipular el ADN
1973El estudio de linajes celulares mediante análisis clonal y el estudio de mutaciones homeóticas condujeron a la teoría de los compartimentos propuesta por Antonio García-Bellido et ál. Según esta teoría, el organismo está constituido por compartimentos o unidades definidas por la acción de genes maestros que ejecutan decisiones que conducen a varios clones de células hacia una línea de desarrollo.
1977Fred Sanger, Walter Gilbert, y Allan Maxam, secuencian ADN por primera vez trabajando independientemente. El laboratorio de Sanger completa la secuencia del genoma del bacteriófago Φ-X174
1983Kary Banks Mullis descubre la reacción en cadena de la polimerasa, que posibilita la amplificación del ADN
1989Francis Collins y Lap-Chee Tsui secuencian un gen humano por primera vez. El gen codifica la proteína CFTR, cuyo defecto causa fibrosis quística
1990Se funda el Proyecto Genoma Humano por parte del Departamento de Energía y los Institutos de la Salud de los Estados Unidos
1995El genoma de Haemophilus influenzae es el primer genoma secuenciado de un organismo de vida libre
1996Se da a conocer por primera vez la secuencia completa de un eucariota, la levadura Saccharomyces cerevisiae
1998Se da a conocer por primera vez la secuencia completa de un eucariota pluricelular, el nematodo Caenorhabditis elegans
2001El Proyecto Genoma Humano y Celera Genomics presentan el primer borrador de la secuencia del genoma humano
2003(14 de abril) Se completa con éxito el Proyecto Genoma Humano con el 99 % del genoma secuenciado con una precisión del 99,99 %6

La Genetica y sus divisiones.

Subdivisiones de la genética

La genética se subdivide en varias ramas, como:

  • Citogenética: El eje central de esta disciplina es el estudio del cromosoma y su dinámica, así como el estudio del ciclo celular y su repercusión en la herencia. Está muy vinculada a la biología de la reproducción y a la biología celular.
  • Clásica o Mendeliana: Se basa en las leyes de Mendel para predecir la herencia de ciertos caracteres o enfermedades. La genética clásica también analiza como el fenómeno de la recombinación o el ligamento alteran los resultados esperados según las leyes de Mendel.
  • Cuantitativa: Analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala.
  • Evolutiva y de poblaciones: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
  • Genética del desarrollo: Estudia como los genes son regulados para formar un organismo completo a partir de una célula inicial.
  • Molecular: Estudia el ADN, su composición y la manera en que se duplica. Así mismo, estudia la función de los genes desde el punto de vista molecular: Como transmiten su información hasta llegar a sintetizar proteínas.
  • Mutagénesis: Estudia el origen y las repercusiones de las mutaciones en los diferentes niveles del material genético.

Ingeniería genética

Artículos principales: Ingeniería genética e Ingeniería genética humana.

La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio (véase Organismo genéticamente modificado). Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly.
Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos.
Respecto a la terapia génica, antes mencionada, hay que decir que todavía no se ha conseguido llevar a cabo un tratamiento, con éxito, en humanos para curar alguna enfermedad. Todas las investigaciones se encuentran en la fase experimental. Debido a que aún no se ha descubierto la forma de que la terapia funcione (tal vez, aplicando distintos métodos para introducir el ADN), cada vez son menos los fondos dedicados a este tipo de investigaciones. Por otro lado, este es un campo que puede generar muchos beneficios económicos, ya que este tipo de terapias son muy costosas, por lo que, en cuanto se consiga mejorar la técnica, es de suponer que las inversiones subirán.

¿Qué es la Genética?

url.jpg


Muchos se preguntaran: 



           La Genética es la rama de la Biología que trata de la herencia y de su variación. La herencia se refiere a que la descendencia tiende a asemejarse a sus padres, basándonos en el hecho de que nuestro aspecto y función biológica, es decir, nuestro fenotipo, viene determinado en gran medida por nuestra constitución genética, es decir, nuestro genotipo.
            
            No obstante, hemos de tener en cuenta que la expresión de numerosos genes, y con ello, la manifestación de los fenotipos correspondientes, está condicionada por factores ambientales. 
            
            Esta disciplina abarca el estudio de las células, los individuos, sus descendientes, y las poblaciones en las que viven los organismos. Los genéticos investigan todas las formas de variación hereditaria así como las bases moleculares subyacentes de tales características. Así pues la Genética se ha dividido en tres grandes ramas: Genética clásica (también llamada genética mendeliana o de la transmisión), Genética molecular y Genética de poblaciones.